Repeated immobilization stress reduces rat vertebral bone growth and osteocalcin.
نویسندگان
چکیده
We previously showed that psychological stressors alter plasma levels of osteocalcin (pOC), a bone-specific mineral binding protein, in ways that differ with the type of stressor. To determine effects of chronic stress, we examined vertebrae, pOC, and corticosterone levels from conscious rats subjected to foot-restraint immobilization (Immo) daily for 1-42 times. After 40-42 Immo, basal pOC was decreased by 25% compared with unstressed rats, and the subsequent rise in pOC during Immo was blunted. Corticosterone was elevated 10-fold during Immo. Immo for seven times did not change vertebral OC concentration, but caused a slight decrease in calcium and phosphorous concentrations in younger rats. Rats Immo for 42 times exhibited reduced body weight, vertebral weight, and vertebral OC concentration but no significant differences in vertebral mineral concentrations. Body fat content was visibly decreased. We do not know the source of or the stimulus for the initial rise in pOC. We conclude that both decreased growth and bone OC concentration are due to repeatedly elevated stress hormones.
منابع مشابه
Effects of Oral Dosage of Lead Acetate II on Osteocalcin Gene Expression in Rat Mesenchymal Stem Cells
Background: Lead (Pb) is a heavy metal that has devastating effects on many animal tissues. In this study we investigated the effects of orally-dosed lead acetate II on osteocalcin gene (osteocalcin) expression in mesenchymal stem cells grown in an osteogenic medium. Osteocalcin is an abundant bone matrix differentiation protein. Methods: Twelve male Wistar rats were divided into three groups ...
متن کاملIncreased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology
Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both t...
متن کاملOsteocalcin and serum insulin-like growth factor-1 as biochemical skeletal maturity indicators
BACKGROUND With change in concepts of growth determination methods, there is a surge in the measurement of biomarkers for appraisal of growth status. Osteocalcin is a bone-specific protein and was observed to parallel the normal growth curve. Hence, the present study was intended to assess the levels of serum osteocalcin and serum insulin-like growth factor-1 (IGF-1) and compare them with cervi...
متن کاملStudies of hormonal regulation of osteocalcin synthesis in cultured fetal rat calvariae.
The synthesis of osteocalcin, the major non-collagenous protein of adult bone, was examined in cultures of 21-day fetal rat calvariae. Osteocalcin was measured by a sensitive and specific radioimmunoassay. Osteocalcin concentration in unincubated calvariae was 14.5 +/- 0.5 ng/calvaria. After incubation, there was a continuous increase in bone and medium osteocalcin, and by 96 h the values were ...
متن کاملInadequate Dietary Phosphorus Levels Cause Skeletal Anomalies and Alter Osteocalcin Gene Expression in Zebrafish
Phosphorus (P) is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (Danio rerio), and sought to determine appropriat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 280 1 شماره
صفحات -
تاریخ انتشار 2001